Department of Functionalized Natural Materials, The Institute of Scientific and Industrial Research, Osaka University 大阪大学 産業科学研究所 第2研究分門 自然材料機能化研究分野

Department of Functionalized Natural Materials, The Institute of Scientific and Industrial Research, Osaka University 大阪大学 産業科学研究所 第2研究分門 自然材料機能化研究分野

Research

Printed Electronics on NanoPaper

Outlines

Cellulose is the most common and abundant bioresources, mainly originating from higher plants. We have successfully extracted cellulose nanofibers with widths of 4-15 nm from wood pulps, and have developed cellulose nanofiber-based materials, such as transparent paper, especially for electronic applications.

Our targets
1. Optically transparent nanofiber paper
2. Paper device
3. Printed electronics
4. Optically transparent composites reinforcing with cellulose nanofibers

 

See our activity below the link.
http://sciencechannel.jst.go.jp/Q140001/detail/Q140001004.html

 

Fig. 1. Future daily life with printed electronics

Fig. 2. Printed electronics on nanopaper

1. Optically transparent nanofiber paper

1-1. Reinventing of the paper !

02

M. Nogi et al. Advanced Materials (2009) DOI: 10.1002/adma.200803174
M. Nogi et al. Applied Physics Letters, (2009) DOI:10.1063/1.3154547

1-2. High total transmittance & Low haze

Fig1

M. Nogi et al., Applied Physics Letters, (2013) DOI:10.1063/1.4804361

1-3. High thermal resistance

加熱

M. Nogi et al., Applied Physics Letters, (2013) DOI:10.1063/1.4804361
Ming-Chun Hsieh et al., Nanoscale (2013), DOI:10.1039/C3NR01951A

2. Paper devices

2-1. High dielectric constant nanopaper

高誘電率ナノペーパー図2

T. Inui et al.  Advanced Materials (2014) DOI: 10.1002/adma.201404555

2-2. Paper memory (ReRAM)

ReRAM

K. Nagashima et al.  Scientific Reports (2014) 4, 5532, doi:10.1038/srep05532

2-3. Transparent electrode on Nanopaper

電気の流れる透明な紙

H. Koga*, M. Nogi* et al. NPG Asia Materials (2014) doi:10.1038/am.2014.9

2-4. Nanopaper transistors

Thumbnail image of graphical abstract

Y. Fujisaki, H. Koga, M. Nogi et al. Advanced Functional Materials (2013) DOI: 10.1002/adfm.20130302

2-5. Conductive lines on nanopaer

TOC

Ming-Chun Hsieh, M. Nogi* et al., Nanoscale (2013) DOI:10.1039/C3NR01951A

2-6. Foldable nanopaper antenna

TOC 30-80mm

M. Nogi*, N. Komoda et al., Nanoscale (2013) DOI: 10.1039/c3nr00231d

2-7. Printable Conductive Nanoink

bm-2013-00075f_0005

Cellulose nanofibers act as dispersing agent for carbon nanotubes. The aqueous dispersion can be used as printable nanoink to provide conductive properties for various substrates including PET films.
H. Koga*, T. Saito et al. Biomacromolecules (2013) DOI: 10.1021/bm400075f

3. Printed electronics using plastics

3.1. Printed antennas

Highly sensitive antenna using inkjet overprinting with particle-free conductive inks

N. Komoda, M. Nogi* et al., ACS Appl. Mater. Interfaces (2012) DOI: 10.1021/am301747p

Printed Silver Nanowire Antennas with Low Signal Loss at High-Frequency Radio

Created with GIMP

N. Komoda, M. Nogi* et al., Nanoscale (2012) DOI: 10.1039/C2NR30485F

3.2 High conductive lines printing using an inkjet printer

Absorption layers of ink vehicles for inkjet-printed lines with low electrical resistance

TOC

C. Kim, M. Nogi* et al. RSC Advances (2012) DOI 10.1039/C2RA21442C

Inkjet-printed lines with well-defined morphologies and low electrical resistance on repellent pore-structured polyimide films

C. Kim, M. Nogi* et al. ACS Applied Materials & Interfaces (2012) DOI: 10.1021/am300160s

Electrical conductivity enhancement in inkjet-printed narrow lines through gradual heating

JMM TOC

C. Kim, M. Nogi* et al. Journal of Micromechanics and Microengineering (2012) DOI:10.1088/0960-1317/22/3/035016

3.3 Fabrication of Silver Nanowire Transparent Electrodes at Room Temperature

TOC

T. Tokuno, M. Nogi* et al. Nano Research (2011) DOI: 10.1007/s12274-011-0172-3

3.4. Printable and Stretchable Conductive Wirings Comprising Silver Flakes and Elastomer

TOC

T. Araki, M. Nogi*  et al., IEEE Electron Device Lett. (2011) DOI: 10.1016/j.compscitech.2011.05.006

4. Optically transparent nanocomposites ( with Prof. Yano in Kyoto univ.)

4.1. Optically transparent composites reinforcing with cellulose nanofibers

Fig4

H. Yano et al., Advanced Materials (2005) DOI: 10.1002/adma.200400597
M. Nogi et al. Appl. Phys. Lett. (2005) DOI: 10.1063/1.2146056

4.2. Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in Electronics Device Industry

entyFig-01

M. Nogi et al. Advanced Materials (2008) DOI: 10.1002/adma.200702559

 



© Department of Functionalized Natural Materials ISIR, Osaka University