必読論文:これさえ読めば、最先端!
Must-read articles. You will the top when you read these!
2021/6/30 Major revision in “コースA”
2021/3/12 Add “コースA” &”コースB”
2020/12/5 Add Turback 1983
2020/11/30 delete one article by Nogi
2020/11/14 Nogi
【コースA】
ミクロフィブリル化セルロース / Microfibrillated cellulose
補足情報 / Supporting information
パルプ・ミクロフィブリル化セルロース・セルロースナノファイバーって、何が違う?
“CMF”と”MFC”って、何が違う?
What is the difference between “pulp fiber”, “MFC”, and “cellulose nanofiber”?
What is the difference between “CMF” & “MFC” ?
A-1. Microfibrillated Cellulose, A New Cellulose Product: Properties, Uses, and Commercial Potential
Albin F. Turbak, Fred W. Snyder, And Karen R. Sandberg
J. Appl. Polym. Sci., Appl. Polym. Symp. 37, 815 (1983)
Turback 1983 ← from here, you can access this article.
高強度複合材料 / High strength composites
A-2. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites
by Yano (2004) cited 424
https://doi.org/10.1007/s00339-003-2453-5
セルロースナノファイバー製造方法 / Production of cellulose nanofibers
補足情報 / Supporting Information
セルロースナノファイバーって、どこにある?
Where is cellulose nanofibers?
ナノセルロース、5つの製造方法
Five nanocellulose productions
A-3. Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose
by Saito (2006)
https://doi.org/10.1021/bm060154s
A-4. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood
by Abe (2007) cited 603
https://doi.org/10.1021/bm700624p
A-5. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics
by Iwamoto (2008) cited 334
https://doi.org/10.1021/bm701157n
閑話休題 / Intermission
10秒で感じる紙の歴史
Paper History in 10 seconds
紙クイズ
Paper Quiz
ナノペーパー&特性 / Nanopaper & its properties
補足情報 / Supporting Information
透明・半透明・不透明とは?/ What is transparent, translucent, and opaque?
紙は、なぜ白い?
Why is the paper white ?
透明な紙って、なに?
What is transparent paper ?
A-6. Optically Transparent Nanofiber Paper
by Nogi (2009) cited 675
https://doi.org/10.1002/adma.200803174
A-7. High thermal stability of optical transparency in cellulose nanofiber paper
by Nogi (2013) cited 90
https://doi.org/10.1063/1.4804361
https://youtu.be/PWIHIVFPvX0 (coming soon)
A-8. Hazy Transparent Cellulose Nanopaper
by Nogi (2017) cited 37
https://doi.org/10.1038/srep41590
閑話休題 / Intermission
木は伐採すべき?伐採してはダメ?
For the global warming, cut down trees or not?
ナノペーパー製造方法 / How to produce nanopaper ?
A-9. Nematic structuring of transparent and multifunctional nanocellulose papers
by Saito (2018) cited 34
https://doi.org/10.1039/C7NH00104E
解説動画 準備中
Introduction video 準備中
related articles
ナノペーパー改質方法 / Improvement of nanopaper properties
A-10. Chemical Modification of Cellulose Nanofibers for the Production of Highly Thermal Resistant and Optically Transparent Nanopaper for Paper Devices
by Yagyu (2015) cited 62
https://doi.org/10.1021/acsami.5b06915
A-11. Improvement of nanodispersibility of oven-dried TEMPO-oxidized celluloses in water
by Saito (2014) cited 40
https://doi.org/10.1007/s10570-014-0444-7
閑話休題 / Intermission
誰が、樹を曲げた?
ナノペーパーのデバイス応用 / Applications of nanopaper
A-12. Cellulose Nanofiber Coatings on Cu Electrodes for Cohesive Protection against Water-Induced Short-Circuit Failures
by Kasuga, Nogi et al.
ACS Appl. Nano Mater. 2021
https://doi.org/10.1021/acsanm.1c00267
Other applications
生分解性湿度センサ / Biodegradable humidity sensor
記憶する紙 / Paper memory
電気の流れる透明な紙とペーパー太陽電池 / Transparent conductive paper & Paper solar cell
高誘電率ペーパー / High dielectric constant paper
https://youtu.be/j9vpejxQ2mc (will be released at 19 Jul 2021)
閑話休題 / Intermission
透明な窓ガラスに、なぜ顔がうつる? / Why see your faint face in a window?
ナノファイバー透明複合材料 / Transparent nanofiber composites
A-13. “Optically transparent composites reinforced with networks of bacterial nanofibers
by Yano (2005) cite 732
https://doi.org/10.1002/adma.200400597
A-14. Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix
by Nogi (2005) cited 152
https://doi.org/10.1063/1.2146056
A-15. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry
by Nogi (2008) cited 361
https://doi.org/10.1002/adma.200702559
エアロゲル / Aerogel
A-16. “Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators” by Saito (2014) cited 264
https://doi.org/10.1002/anie.201405123
解説動画 準備中
Introduction video 準備中
セルロースナノファイバーの特性 / Properties of cellulose nanofibers
A-17. “Ion-exchange behavior of carboxylate groups in fibrous cellulose oxidized by the TEMPO-mediated system” by Saito (2005) cited 157
https://doi.org/10.1016/j.carbpol.2005.04.009
解説動画 準備中
Introduction video 準備中
A-18. “An ultrastrong nanofibrillar biomaterial: The strength of single cellulose nanofibrils revealed via sonication-induced fragmentation” by Saito (2013) cited 314
https://doi.org/10.1021/bm301674e
解説動画 準備中
Introduction video 準備中
セルロースナノファイバー変性処理 / Chemical treatment of cellulose nanofibers
A-19. “Property enhancement of optically transparent bionanofiber composites by acetylation” by Nogi (2006) cited 93
https://doi.org/10.1063/1.2403901
解説動画 準備中
Introduction video 準備中
A-20. “Hydrophobic, Ductile, and Transparent Nanocellulose Films with Quaternary Alkylammonium Carboxylates on Nanofibril Surfaces” by Saito (2014) cited 73
https://doi.org/10.1021/bm501329v
解説動画 準備中
Introduction video 準備中
【コースB】
➀ナノセルロース調製
B-1. “TEMPO酸化”
Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose
Saito et al., Biomacromolecules, 8, 2485–2491 (2007)
https://pubs.acs.org/doi/10.1021/bm0703970
B-2. “ACC”
Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers
Kondo et al., Carbohydrate Polymers, 112, 284-290 (2014)
https://doi.org/10.1016/j.carbpol.2014.05.064
②ナノセルロースフィルム・紙
B-3. “酸素バリア性”
Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation
Fukuzumi et al., Biomacromolecules, 10, 162-165 (2009)
https://pubs.acs.org/doi/10.1021/bm801065u
B-4. “透明性・強度・熱膨張率”
Transparent Nanofiber Paper
Nogi et al., Advanced Materials, 21, 1595-1598 (2009)
https://doi.org/10.1002/adma.200803174
③ナノセルロースエアロゲル
B-5. “凍結乾燥”
Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates
for functionalities
Ikkara et al., Soft Matter, 4, 2492–2499 (2008)
https://doi.org/10.1039/B810371B
B-6. “蒸発乾燥”
Ambient-Dried Cellulose Nanofibril Aerogel Membranes with High Tensile Strength and Their Use
for Aerosol Collection and Templates for Transparent, Flexible Devices
Ikkara et al., Advanced Functional Materials, 25, 6618–6626 (2015)
https://doi.org/10.1002/adfm.201502566
B-7. “一方向凍結乾燥”
Cellulose Nanofiber as a Distinct Structure-Directing Agent for Xylem-like Microhoneycomb Monoliths
by Unidirectional Freeze-Drying
Nishihara et al., ACS Nano, 10, 10689-10697 (2016)
https://pubs.acs.org/doi/abs/10.1021/acsnano.6b05808
④ナノセルロース紙・パルプ紙の細孔構造制御
B-8. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous-Flow Nanocatalysis
Koga et al., ChemSusChem, 10, 2560-2565 (2017)
https://doi.org/10.1002/cssc.201700576
⑤脱リグニンとTEMPO酸化処理による多孔質・高比表面積木材および透明な紙の調製
B-9. Self-Densification of Highly Mesoporous Wood Structure into a Strong and Transparent Film
Zhou et al., Advanced Materials, 32, 2003653 (2020)
https://doi.org/10.1002/adma.202003653
⑥グリーンエレクトロニクス関連
B-10. “リサイクル”
Recyclable organic solar cells on cellulose nanocrystal substrates
Kippelen et al., Scientific Reports, 3, 1536 (2013)
https://www.nature.com/articles/srep01536
B-11. “生分解”
High-Performance Green Flexible Electronics Based on Biodegradable Cellulose Nanofibril Paper
Ma et al., Nature Communications, 6, 7170 (2015)
https://www.nature.com/articles/ncomms8170
⑦Solar vapor generation
B-12. A Bioinspired, Reusable, Paper-Based System for High-Performance Large-Scale Evaporation
Deng et al., Advanced Materials, 27, 2768-2774 (2015)
https://doi.org/10.1002/adma.201500135
⑧ナノセルロース高温炭化
B-13. “バクテリアセルロース”
Highly conductive and stretchable conductors fabricated from bacterial cellulose
Yu et al., NPG Asia Materials, 4, e19 (2012)
https://www.nature.com/articles/am201234
B-14. “TEMPO酸化ナノセルロース”
Wood-Derived Ultrathin Carbon Nanofiber Aerogels
Yu et al., Angew. Chem. Int. Ed., 57, 7085–7090 (2018)
https://doi.org/10.1002/anie.201802753
⑨レーザー炭化
B-15. “ポリイミド”
Laser-induced porous graphene films from commercial polymers
Tour et al., Nature Communications, 5, 5714 (2014)
https://www.nature.com/articles/ncomms6714
B-16. “木材”
Laser-Induced Graphene Formation on Wood
Tour et al., Advanced Materials, 29, 1702211 (2017)
https://doi.org/10.1002/adma.201702211
B-17. “布、紙、パン”
Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food
Tour et al., ACS Nano, 12, 2176-2183 (2018)
https://doi.org/10.1021/acsnano.7b08539
【おまけ / Additional】
非ナノファイバー透明複合材料 / Transparent composites without nanofibers
C-1. “The transparent crab: Preparation and nanostructural implications for bioinspired optically transparent nanocomposites” by Yano (2012) cited 29
https://doi.org/10.1039/C1SM06785K
A-16. “Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance” by Bergulund (2016) cited 139
https://doi.org/10.1021/acs.biomac.6b00145
エアロゲル / Aerogel
C-2. “Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters” by Nemoto (2015) cited 101
https://doi.org/10.1021/acsami.5b05841
セルロースナノファイバー変性処理 / Chemical treatment of cellulose nanofibers
C-3. “Surface Modification of Bacterial Cellulose Nanofibers for Property Enhancement of Optically Transparent Composites: Dependence on Acetyl-group DS” by Ifuku (2007) cited 268
https://doi.org/10.1021/bm070113b
キチンナノファイバー製造方法 / Production of chitin nanofibers
C-4. “Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin” by Saito (2008) cited 203
https://doi.org/10.1021/bm700966g
C-5. “Preparation of chitin nanofibers from squid Pen β-chitin by simple mechanical treatment under acid conditions” by Saito (2008) cited 199
https://doi.org/10.1021/bm800178b
C-6. “Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells” by Ifuku (2009) cited 300
https://doi.org/10.1021/bm900163d
C-7. “Fibrillation of dried chitin into 10-20 nm nanofibers by a simple grinding method under acidic conditions” by Ifuku (2010) cited 132
https://doi.org/10.1016/j.carbpol.2010.02.006
C-8. “Simple preparation method of chitin nanofibers with a uniform width of 10-20 nm from prawn shell under neutral conditions” by Ifuku (2011) cited 79
https://doi.org/10.1016/j.carbpol.2010.04.039
© Department of Functionalized Natural Materials ISIR, Osaka University